Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Transfusion ; 62(10): 1997-2011, 2022 10.
Article in English | MEDLINE | ID: covidwho-2019638

ABSTRACT

BACKGROUND: Efficacy of donated COVID-19 convalescent plasma (dCCP) is uncertain and may depend on antibody titers, neutralizing capacity, timing of administration, and patient characteristics. STUDY DESIGN AND METHODS: In a single-center hypothesis-generating prospective case-control study with 1:2 matched dCCP recipients to controls according to disease severity at day 1, hospitalized adults with COVID-19 pneumonia received 2 × 200 ml pathogen-reduced treated dCCP from 2 different donors. We evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in COVID-19 convalescent plasma donors and recipients using multiple antibody assays including a Coronavirus antigen microarray (COVAM), and binding and neutralizing antibody assays. Outcomes were dCCP characteristics, antibody responses, 28-day mortality, and dCCP -related adverse events in recipients. RESULTS: Eleven of 13 dCCPs (85%) contained neutralizing antibodies (nAb). PRT did not affect dCCP antibody activity. Fifteen CCP recipients and 30 controls (median age 64 and 65 years, respectively) were enrolled. dCCP recipients received 2 dCCPs from 2 different donors after a median of one hospital day and 11 days after symptom onset. One dCCP recipient (6.7%) and 6 controls (20%) died (p = 0.233). We observed no dCCP-related adverse events. Transfusion of unselected dCCP led to heterogeneous SARS CoV-2 antibody responses. COVAM clustered dCCPs in 4 distinct groups and showed endogenous immune responses to SARS-CoV-2 antigens over 14-21 days post dCCP in all except 4 immunosuppressed recipients. DISCUSSION: PRT did not impact dCCP anti-virus neutralizing activity. Transfusion of unselected dCCP did not impact survival and had no adverse effects. Variable dCCP antibodies and post-transfusion antibody responses indicate the need for controlled trials using well-characterized dCCP with informative assays.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Case-Control Studies , Humans , Immunization, Passive , Middle Aged , COVID-19 Serotherapy
2.
Nat Commun ; 13(1): 4212, 2022 07 21.
Article in English | MEDLINE | ID: covidwho-1947344

ABSTRACT

An easily implementable serological assay to accurately detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibodies is urgently needed to better track herd immunity, vaccine efficacy and vaccination rates. Herein, we report the Split-Oligonucleotide Neighboring Inhibition Assay (SONIA) which uses real-time qPCR to measure the ability of neutralizing antibodies to block binding between DNA-barcoded viral spike protein subunit 1 and the human angiotensin-converting enzyme 2 receptor protein. The SONIA neutralizing antibody assay using finger-prick dried blood spots displays 91-97% sensitivity and 100% specificity in comparison to the live-virus neutralization assays using matched serum specimens for multiple SARS-CoV-2 variants-of-concern. The multiplex version of this neutralizing antibody assay, using easily collectable finger-prick dried blood spots, can be a valuable tool to help reveal the impact of age, pre-existing health conditions, waning immunity, different vaccination schemes and the emergence of new variants-of-concern.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Neutralization Tests , Polymerase Chain Reaction , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
3.
Transfusion ; 62(3): 570-583, 2022 03.
Article in English | MEDLINE | ID: covidwho-1673310

ABSTRACT

BACKGROUND: COVID-19 convalescent plasma (CCP), from donors recovered from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, is one of the limited therapeutic options currently available for the treatment of critically ill patients with COVID-19. There is growing evidence that CCP may reduce viral loads and disease severity; and reduce mortality. However, concerns about the risk of transfusion-transmitted infections (TTI) and other complications associated with transfusion of plasma, remain. Amotosalen/UVA pathogen reduction treatment (A/UVA-PRT) of plasma offers a mitigation of TTI risk, and when combined with pooling has the potential to increase the diversity of the polyclonal SARS-CoV-2 neutralizing antibodies. STUDY DESIGN AND METHODS: This study assessed the impact of A/UVA-PRT on SARS-CoV-2 antibodies in 42 CCP using multiple complimentary assays including antigen binding, neutralizing, and epitope microarrays. Other mediators of CCP efficacy were also assessed. RESULTS: A/UVA-PRT did not negatively impact antibodies to SARS-CoV-2 and other viral epitopes, had no impact on neutralizing activity or other potential mediators of CCP efficacy. Finally, immune cross-reactivity with other coronavirus antigens was observed raising the potential for neutralizing activity against other emergent coronaviruses. CONCLUSION: The findings of this study support the selection of effective CCP combined with the use of A/UVA-PRT in the production of CCP for patients with COVID-19.


Subject(s)
COVID-19 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Furocoumarins , Humans , Immunization, Passive , SARS-CoV-2 , COVID-19 Serotherapy
4.
Sci Rep ; 10(1): 20188, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-936146

ABSTRACT

Accurate surveillance of coronavirus disease 2019 (COVID-19) incidence requires large-scale testing of the population. Current testing methods require in-person collection of biospecimens by a healthcare worker, limiting access of individuals who do not have access to testing facilities while placing both patients and healthcare workers at risk of exposure to infection. We report the development and validation of a at-home finger-prick dried blood spot collection kit and an analysis method. We demonstrated 100% sensitivity and specificity using at-home collected specimens across the US. Such methods may facilitate the conduct of unbiased serosurveys within hard to reach populations and help reduce the sample collection burden of serological testing on both health care systems and individuals alike.


Subject(s)
COVID-19 Serological Testing/methods , Dried Blood Spot Testing/standards , Reagent Kits, Diagnostic/standards , Adult , Aged , Aged, 80 and over , COVID-19 Serological Testing/standards , Dried Blood Spot Testing/instrumentation , Female , Humans , Male , Middle Aged , Sensitivity and Specificity
5.
SLAS Technol ; 25(6): 545-552, 2020 12.
Article in English | MEDLINE | ID: covidwho-724761

ABSTRACT

As of July 22, 2020, more than 14.7 million infections of SARS-CoV-2, the virus responsible for Coronavirus Disease 2019 (COVID-19), have been confirmed globally. Serological assays are essential for community screening, assessing infection prevalence, aiding identification of infected patients, and enacting appropriate treatment and quarantine protocols in the battle against this rapidly expanding pandemic. Antibody detection by agglutination-PCR (ADAP) is a pure solution phase immunoassay that generates a PCR amplifiable signal when patient antibodies agglutinate DNA-barcoded antigen probes into a dense immune complex. Here, we present an ultrasensitive and high-throughput automated liquid biopsy assay based on the Hamilton Microlab ADAP STAR automated liquid-handling platform, which was developed and validated for the qualitative detection of total antibodies against spike protein 1 (S1) of SARS-CoV-2 that uses as little as 4 µL of serum. To assess the clinical performance of the ADAP assay, 57 PCR-confirmed COVID-19 patients and 223 control patients were tested. The assay showed a sensitivity of 98% (56/57) and a specificity of 99.55% (222/223). Notably, the SARS-CoV-2-negative control patients included individuals with other common coronaviral infections, such as CoV-NL63 and CoV-HKU, which did not cross-react. In addition to high performance, the hands-free automated workstation enabled high-throughput sample processing to reduce screening workload while helping to minimize analyst contact with biohazardous samples. Therefore, the ADAP STAR liquid-handling workstation can be used as a valuable tool to address the COVID-19 global pandemic.


Subject(s)
Alphacoronavirus/immunology , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus NL63, Human/immunology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Animals , Automation, Laboratory , Chiroptera , Clinical Laboratory Techniques , Cross Reactions , High-Throughput Screening Assays , Humans , Immunoassay , Pandemics , Polymerase Chain Reaction , Robotic Surgical Procedures , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL